Chlorophyll a and Algae Populations in Lakes and Streams

By: Dr. Carolyn Thomas
Dr. Bob Pohlad, & Meaghan Hill
Ferrum College
Ferrum, VA
October 12, 2007

Outline

- 1. Smith Mountain Lake
- 2. Eutrophication
- 3. Chlorophyll a sampling
 - Sampling
 - Analysis
 - Data
- 4. Stream algae
- 5. Algae populations
 - Plankton tows
 - Atlas
 - Data templates and data
- 6. Summary

Smith Mountain Lake

Smith Mountain Lake Water Quality Program

- Project Goals:
 - **(1) Monitor Trophic Status of Smith Mountain Lake
 - (2) Monitor Bacterial Quality of Smith Mountain Lake
 - (3) Involve Citizens in Environmental Protection
 - Each volunteer monitors water quality at three stations every other week from Memorial Day to Labor Day
 - Basic Monitors measure water clarity with a Secchi disk
 - Advanced Monitors measure water clarity and collect samples to be analyzed at Ferrum College for chlorophylla and total phosphorus
 - Schedule: Each season begins with a training session and ends with a picnic where data is reviewed and the program evaluated.

Trophic State

Eutrophication is the process by which lakes are enriched with nutrients, increasing the production of rooted aquatic plants and algae and decreasing water clarity.

<u>oligotrophic</u> - nutrient poor and low productivity; high transparency (deep secchi depth), low chlorophyll-a, low phosphorus

<u>mesotrophic</u> - moderately productive; intermediate clarity, chlorophyll and phosphorus concentration

<u>eutrophic</u> - very productive and fertile; low clarity/shallow secchi; <u>high chlorophyll</u> and phosphorus concentrations.

hypereutrophic - extremely productive with noxious surface scums of algae

TROPHIC STATUS INDEX (TSI) & WATER QUALITY (on a scale from 0 - 100)

- < 40 Oligotrophic; Clear, possible periods of limited anoxia
- 40-50 Mesotrophic; Moderately clear; increasing chance of anoxia in summer; swimmable/aesthetic uses intact
- 50-60 Mildly eutrophic; decreased transparency; anoxia; macrophyte problems; warm-water fisheries only; supportive of swimmable/aesthetic uses; "threatened"
- 60-70 Blue-green algae dominance; scums possible; extensive macrophyte problems
- > 80 Heavy algal blooms possible throughout summer; dense macrophyte beds; hypereutrophic

Using Total Phosphorus, Chlorophyll a and Clarity to Assess Trophic State Index

Chlorophyll a Sampling

Chlorophyll a Analysis

Chlorophyll a Data

Table A5. 2006 Chlorophyll-a data for Smith Mountain Lake sample stations.

5/28-6/3	6/11-6/17	6/25-7/1	7/9-7/15	7/23-7/29	8/6-8/12	Station avg.	Std. Dev.

conc(ppb)

1.45

3.96

15.67

13.84

12.78

26.48

18.61

25.32

2.04

2.76

1.56

15.46

conc(ppb)

2.22

3.53

10.04

11.29

18.67

16.72

17.56

14.18

4.92

2.34

2.37

5.24

conc(ppb)

4.84

2.20

5.75

5.13

11.85

14.00

9.60

6.84

4.11

10.26

3.17

7.34

(ppb)

2.44

2.52

6.85

8.26

11.41

12.69

11.91

16.27

2.48

3.99

2.11

7.49

1.60

1.06

5.66

4.40

5.32

8.51

5.48

7.26

1.77

3.17

0.78

5.99

conc(ppb)

3.95

2.40

7.72

7.98

11.55

10.62

13.09

22.97

2.39

4.20

2.79

13.80

Station

B8

B10

B12

B14

B16

B18

B20

B22

C4

C5

C6

CB11

conc(ppb)

1.00

1.05

0.32

3.05

11.51

5.68

7.68

9.99

0.17

2.00

1.40

0.99

conc(ppb)

1.15

1.99

1.59

2.11

2.65

4.93

18.33

1.24

2.39

1.37

2.12

Algae in Streams

- Almost all algae in streams is attached to rocks, plants or debris in stream called Periphyton
- Sample be scrapping algae film from rocks etc. or place artificial substrate in stream i.e. ceramic tiles or microscope slides
- Diatoms are most common followed by filamentous green algae.

Algae Sampling

Plankton Count Data Template

Plankton Type	Diatoms						Green Algae	
Species	Dinobryon	Asterionella	Diatoma	Fragilaria	Navicula	Unkown	Microspora	
Date								
Vertical Tow Counts								
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
Total species	0	0	0	0	0	0	0	

Plankton Count Data Template (cont)

l plankto n	# of meters towed	Volume towed (L)	Counts per mL in sample	Counts per tow in sample	Counts per mL in lake	Diatoms per mL
29	4	292	5917	1.73E+09	2.0	0.6
21	10	730	4285	3.13E+09	1.5	0.3
64	8	584	13059	7.62E+09	4.5	2.6
16	2.5	182	3265	5.96E+08	1.1	0.1
9	7	511	1836	9.38E+08	0.6	0.6
16	8	584	3265	1.91E+09	1.1	0.3
11	10	730	2244	1.64E+09	0.8	0.2
4	3.5	255	816	2.08E+08	0.3	0.1
10	2	146	2040	2.98E+08	0.7	0.3
13	10	730	2653	1.94E+09	0.9	0.3
8	2	146	1632	2.38E+08	0.6	0.1
30	4	292	6121	1.79E+09	2.1	1.0
5	3	219	1020	2.23E+08	0.3	0.2
6	4	292	1224	3.57E+08	0.4	0.0
242		0	49378	0.00E+00	16.9	6.8

Smith Mountain Lake Algal Populations

June 11, 2007

SML Vertical Tow Species Distribution 06/24/07

June 24, 2007

Atlas of Phytoplankton

Ferrum College 2007

Diatoms, Green, and Blue-Green Algae

by: Dr. Bob Pohlad and Meaghan Hill

Algae found in Smith Mountain Lake

Summary

- Chlorophyll a is an indicator of the trophic status of lakes and reservoirs.
- Trophic status is an important method to assess the water quality in our lakes and reservoirs.
- Algal populations' the assessment indicate the presence of unwanted algae such as blue greens.